
 WINMIRA 2001

 (c) 2000, 2001 by Matthias von Davier





Table of Contents

WINMIRA user manual.............................................................................1

The WINMIRA THANK YOU PAGE:.....................................................3

Preface..........................................................................................................5

How to use WINMIRA? ..............................................................................7

How to do a Latent Class  Analysis......................................................8

How to analyse data with the Rasch  Model......................................10

How to do a Mixed  Rasch Model......................................................12

How to analyse data with the Hybrid  Model.....................................14

Open data............................................................................................17

Open SPSS Data Files...............................................................17

Import ASCII Data....................................................................18

Recode data with WINMIRA.............................................................20

How to edit variables with  WINMIRA?............................................21

Select variables...................................................................................22

Choose Number of Classes:................................................................25

1

 WINMIRA 2001



Table of Contents

Choosing Output Options:..................................................................26

Appending variables to  the data:.......................................................28

Edit filenames:....................................................................................29

Edit default values:.............................................................................31

Testing the fit of a model with  the Bootstrap:...................................33

Start Run:............................................................................................35

Parameter constraints...............................................................................37

Probability constraints........................................................................38

Logistic parameter  constraints:..........................................................40

Class size constraints..........................................................................41

The  rationale of Mixture Distribution Models.......................................43

Parameter estimation  in MDM..........................................................45

The LCA for ordinal variables.................................................................47

The threshold approach in the  ordinal LCA......................................48

The threshold approach  in the LCA (cont.):......................................51

2

 WINMIRA 2001



Table of Contents

What does the LCA−part of the  program?........................................55

What can LCA be used for?...............................................................56

The Mixed Rasch  Model..........................................................................61

The dichotomous Mixed  Rasch model..............................................62

The polytomous Mixed  Rasch model................................................63

The Rating Scale Model............................................................65

The Equidistance Model............................................................66

The Dispersion Model ..............................................................68

The Ordinal (Partial Credit)  Model .........................................69

Person Parameters...............................................................................70

Latent Score Distributions..................................................................72

Category Characteristic Curves..........................................................74

The Q−Index.......................................................................................75

The Hybrid Model.....................................................................................79

Using the output of  WINMIRA ...............................................................81

3

 WINMIRA 2001



Table of Contents

Printing  the output.............................................................................81

Display Graphical Output...................................................................82

Example Output file............................................................................85

References:...............................................................................................109

4

 WINMIRA 2001



WINMIRA user manual

− by Matthias von Davier − e−mail: winmira@von−davier.de

WINMIRA is a software for analyses with a variety of discrete mixture

distribution models for dichotomous and polytomous categorical data. This

software can be used for

the Rasch Model,

the Latent Class Analysis,

the Mixed Rasch Model,

and the Hybrid Model.
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Preface

The development of WINMIRA was aimed at producing an easy to use

software tool for categorical data analysis with the a variety of models

including the Latent Class Analysis and the Mixed Rasch Model. Even

though the user interface is more or less self explaining, there will still

remain difficulties in using this software. Some of the models which can

be estimated with WINMIRA are comparably complex, and therefore,

quite a few selections have to be made. As this software is thought to be a

scientific tool for data analysis, I tried not to restrict the use of the software

in order to make it even more easy to use. This lack of control puts full

responsibility in the hand of the user! It is especially important to be sure

about which model has been specified and estimated, as the lack of input

restrictions makes it even more important to examine the results of the

analyses very carefully. For example, please consider a model with to

many classes and only a few items. The algorithm may still run, though the

final solution is not identified and there may be some classes with a class

size near to zero. In addition, some parameters may diverge to minus or

plus infinity so that some categories in the respective latent class have

expected frequencies close to zero. Perhaps, most of these cases could be

prevented by the software, but that would mean to have a program with

many warnings in the output and nasty message boxes during runtime.
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Therefore, it can not be guaranteed that the software fulfills all

requirements of the users (see the license agreement), and responsibility

has to be taken by the users to interpret and examine the output carefully.

Support in using the software can be given, of course, e.g. by supplying

references or helping to interpret some pieces of output. Problems with the

software and ideas for improving it should be reported directly to my

e−mail address:

winmira@von−davier.de

Of course, not everything can be taken into account, but in the past I've

been able to improve the software mainly because there have been users of

previous versions sending very helpful comments.

6 Preface

 WINMIRA 2001

mailto:winmira@von-davier.de


How to use WINMIRA?

This HTML coursework provides cookbook examples of how to use the

software WINMIRA 32. It will not tell much about the mathematical

background of the models implemented in WINMIRA. Please refer to the

references part of this hypertext in order to find out more about the math.

These pages are intended to provide a quick reference for enabling novice

users to start using the software without a human tutor.

Contents:
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How to analyse data with...

• the Latent Class Analysis

• the Rasch Model

• the Mixed Rasch Model

• the Hybrid Model

WINMIRA related WWW Links

• Winmira Homepage

• ProGAMMA

• ASC

How to do a Latent Class Analysis

• Open Ascii or SPSS Data Files

• Recode Data if necessary

• Select Variables

• Choose the number of latent classes

8 How to do a Latent Class  Analysis
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Choose the Latent class analysis from the Job Definition > Select Model

submenu as shown in the following screenshot.

This will open the model selection dialog for the Latent Class Analysis,

see below.

If you use WINMIRA for the first time, please do not change anything.

How to do a Latent Class  Analysis 9
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Clicking OK with the default settings will choose the most general LCA

model which is suitable both for dichotomous and polytomous data. The

remaining options impose restrictions on the model parameters of the

LCA. More information on restricted models can also be found in the

references.

• Change Output Options if necessary,

• choose Bootstrap Fit Statistics if your data are sparse,

• Start Run,

• Display Graphical Output

How to analyse data with the Rasch Model

• Open Ascii or SPSS Data Files

• Recode Data if necessary

• Select Variables

• Do not choose the number of latent classes! (not necessary for the

ordinary Rasch model, this model assumes that the same parameters

hold for the whole population.).

Choose the Rasch model from the Job Definition>Select Model submenu

10 How to analyse data with the Rasch  Model
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as shown in the following screenshot.

This will open the model selection dialog for the Rasch Model and the

Mixed Rasch Model, see below.

If you use WINMIRA for the first time, please do not change anything.

Clicking OK with the default settings will choose the most common Rasch

model which is suitable both for dichotomous and polytomous data. The

How to analyse data with the Rasch  Model 11
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remaining options impose restrictions on the model parameters of the

model More information on restricted Rasch models can also be found in

the references.

• Change Output Options if necessary,

• choose Bootstrap Fit Statistics if your data are sparse,

• Start Run,

• Display Graphical Output

How to do a Mixed Rasch Model

• Open Ascii or SPSS Data Files

• Recode Data if necessary

• Select Variables

• Choose the number of latent classes

Choose the Mixed Rasch Model from the Job Definition>Select Model

submenu as shown in the following screenshot.

12 How to do a Mixed  Rasch Model
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This will open the model selection dialog for the Mixed Rasch Model, see

below.

If you use WINMIRA for the first time, please do not change anything.

Clicking OK with the default settings will choose the most common Mixed

Rasch Model which is suitable both for dichotomous and polytomous data.

How to do a Mixed  Rasch Model 13
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The remaining options impose restrictions on the model parameters of the

Mixed Rasch Model. More information on restricted Rasch models can

also be found in the references.

• Change Output Options if necessary,

• choose Bootstrap Fit Statistics if your data are sparse,

• Start Run,

• Display Graphical Output

How to analyse data with the Hybrid Model

• Open Ascii or SPSS Data Files

• Recode Data if necessary

• Select Variables

• Choose the number of latent classes

Choose the Hybrid model from the Job Definition > Select Model

submenu as shown in the following screenshot.

14 How to analyse data with the Hybrid  Model
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This will open the model specification dialog for the Hybrid Model as

depicted below:

Please click on the Class 'n' lines for choosing one of the available Rasch

or Latent Class Submodels. A doubleclick on the line 'Class 2' as shown

above will open the following dialog and lets you choose between any of

the available models, like it can be done for the Rasch Model or the Mixed

How to analyse data with the Hybrid  Model 15
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Rasch Model.

In contrast to the Mixed Rasch Model or the Latent Class Analysis, you

can specify a different model within each of the classes, so that there are

no similarity restrictions between the classes despite the fact that all

models assume a logistic distributional function as their basis.

If you use WINMIRA for the first time, please do not change anything.

Clicking OK with the default settings will choose the most common Mixed

Rasch Model which is suitable both for dichotomous and polytomous data.

The remaining options impose restrictions on the model parameters of the

Mixed Rasch Model. More information on restricted Rasch models can

16 How to analyse data with the Hybrid  Model
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also be found in the references.

• Change Output Options if necessary,

• choose Bootstrap Fit Statistics if your data are sparse,

• Start Run,

• Display Graphical Output

Open data

Open SPSS Data Files

Please select the menu entry File > Open > Open Spss Data as shown in

the screenshot below:

Open data 17

 WINMIRA 2001



Select the data file in the file selection dialog:

In this example, the file named "Daten.sav" was chosen. Click the OK

button in order to confirm the selection. This will load the datafile.

Import ASCII Data

If you choose a file with an extension different from ".SAV", it is assumed

that ASCII data are imported. Alternatively, you may also choose 'Load

ASCII Data' from the submenu of the File > Open menu entry.

18 Import ASCII Data
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Clicking theOK button will open another window which asks for

information needed to import ASCII data.

Please select the separator character (in most cases, this will be the space

or the tab character) and click OK in order to import ASCII data.

Import ASCII Data 19
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Recode data with WINMIRA

please choose the Data Specification > Recodings menu entry as depicted

in the following figure:

This will open the Recode dialog, which contains a list of all variables in

the dataset.

In this example the variables VAR4, VAR6, VAR8 and VAR9 are chosen

20 Recode data with WINMIRA
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to be recoded. Please enter all values to be recoded together with the new

codes in the grid on the right hand side of the dialog. In order to start

recoding, click on the OK button. The data will be then recoded into the

same variables.

A good idea is to rename the variables that have been recoded. This can be

done with the edit variable dialog.

How to edit variables with WINMIRA?

by doubleclicking on the first row in the data file (the fixed row where the

variable labels are), the variable menu is activated.

Please choose Delete Variable if you need to remove variables from the

dataset or click on Edit Variable in order to open the following dialog:

How to edit variables with  WINMIRA? 21
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In the example dialog above, the variables name is 'VAR5' and the label is

'mein kleiner grüner Kaktus' (my small green succulent? plant). You may

change the variable's name, label and output format, i.e., it's printed width

and decimals.

Select variables

Click on the menu entry Data specification > Select Variables as seen

below:

22 Select variables

 WINMIRA 2001



Indicate which items of the current dataset are to be included in the

analysis. Please do not choose all items, think of which items represent the

construct you want to measure and select the items accordingly.

After clicking the ok button, the selected items will be analysed in order to

obtain the number of categories and the missing values for each item, and

in addition, whether all categories have at least been chosen once. If the

category codes do not start from 0 [zero], as it is required by the

algorithms of WINMIRA, the items will be 'autorecoded', i.e., the

minimum code (say 1 [one] instead of 0 [zero]) will be subtracted from all

observed values. Below, the 'view selected items' dialog is depicted. This

dialog shows the selected variables together with their number of

categories as extracted from the data by the testing algorithm, together

Select variables 23
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with the minimum and maximum code. If the minimum code is larger than

0 (zero), autorecode will be enabled in the dialog automatically.

Please click the OK button in order to confirm the selection. This will

enable WINMIRA 32's other menus that have been disabled before. Now

the model selection and other more detailed specifications of the model to

be estimated are made available, as the data specification is completed by

accepting the selection in this dialog.

24 Select variables
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Choose Number of Classes:

Please choose the Job Definition > N. of Classes menu entry like shown in

the figure below:

This will open the Number of Classes Dialog, which allows to specify a

upper and lower bounds for the number of classes to be computed during

the computation with WINMIRA.

Choose Number of Classes: 25
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In this example, only one model with three latent classes will be computed.

Increasing the number in the 'To #N of Classes' field to 5 will make

WINMIRA 32 to compute three models with three, four and five latent

classes. Decreasing the 'From #N of Classes' field to 2  will make

WINMIRA to compute both the two and the three class solution for the

specified model.

Choosing Output Options:

Please choose the Job Definition > Output Options menu entry like shown

in the figure below:

This will open the Output Options Dialog, which allows to specify a

number of tables to be generated by WINMIRA and additional information

26 Choosing Output Options:
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to be written in additional files or to be appended to the dataset.

As a default, both the categrory probabilities and the item parameter

estimates for each latent class are written in tabular form to the output file.

For Rasch Models and Mixed Rasch Models (and also for the Rasch

Classes in Hybrid models), person parameter estimates and the item fit

measure Q−Index are printed out in addition to the other two default

tables.

In this example, 'add person parameters etc. to datafile' was chosen in

addition to the default output options. This will gererate additional

variables for each person (case) in the dataset. These additional

Choosing Output Options: 27
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variables contain information about the most probable class, the

personparameter estimate and person fit measures.

Appending variables to the data:

When 'append person parameters etc. to datafile' was chosen in the Output

Options menu, a number of variables will be added to the datafile that was

used for estimating the model. The picture below shows the realisations of

these variables for the cases 760 to 764 in our example data.

The variable 'PERSPAR' contains the trait estimate, 'STDERR' contains

the standard error of estimation for the sufficient statistic. 'MAXPI'

contains the maximum of the posterior probabilities of being member of

one of the latent classes given the observed response vector of the

respective person. 'MAXCLASS' is the latent class carrying the maximum

28 Appending variables to  the data:
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probability given the response vector. 'OLDFIT' is a (heavily skewed)

person fit index. 'NEWFIT' contains an almost normally distributed Person

Fit Index.

Edit filenames:

Please select the menu entry Job Definition > Edit Defaults as shown in the

screenshot below:

This menu provides options to specify filenames and the destination path

for the output files, i.e., for the final estimates, the pattern frequencies file.

The Output−file can be overwritten by selecting the respective option in

this submenu. Otherwise, the "old" Output−file will be kept and the name

Edit filenames: 29
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of the "new" output file will be modified in the following way:

If <filename.OUT> is already existing, the "new" output will be renamed

to <filename.OU1>. If <filename.OU1> exists, then the current will be in

<filename.OU2> and so on.

The pattern−frequency−file's name is not modified automatically, as

usually only one pattern−frequency (the one according to the finally

selected model) is required. Please modify the pattern−frequency−file

name manually if more than one pattern−frequency file is required for

additional analyses.

The class membership filename is now obsolete, as all person−related

statistics can be appended directly to the datafile in the WINMIRA 32 pro

version of the software.

30 Edit filenames:

 WINMIRA 2001



If WINMIRA 32 refuses to start the analysis it is good advice to check

whether the destination path is existing, especially if data and definition

files for running WINMIRA 32 are moved from one computer to another.

Edit default values:

Please select the menu entry Job Definition > Edit Defaults as shown in the

screenshot below:

This will open the edit defaults dialog box as shown below. Please be

careful when modifying any of the values in this dialog box, as some very

important basic parameters of WINMIRA 32 can be modified here. Please

examine your output−files carefully if you have changed any of these

values.

Edit default values: 31
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The maximum number of iterations limits the process of parameter

estimation by default to a maximum of 500 iterations. Please examine the

output−file to find out whether this number was reached. Typically this

happens when the accuracy criterion was not met, i.e. the difference of the

log−likelihood between two subsequent iterations was greater than the

criterion. In these cases, the maximum number of iteration should be

increased.

The random start value is used in some of the random number generators

for the initial response pattern splitting in the EM algorithm. Please change

this value whenever you think the results obtained by WINMIRA could be

a local maximum (mainly due to small sample size).

The number of start values is used for the initial search for the (relatively)

32 Edit default values:
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best starting point in the parameter space. Increase this number if you

suspect that WINMIRA 32 might get stuck in local maxima.

The sort output by class size checkbox allows to choose between an

unsorted output file, where classes are assigned by chance or by the within

class restrictions (like in Hybrid models, or if models with unique

parameter constraints imply the order of the classes), and an output sorted

by class sizes (whenever all mixture components carry the same structure

like in the ordinary LCA or the ordinary mixed Rasch model).

The step−width for minimization is used in some of the estimation

procedures, please do not change this value, because it is the result of a lot

of numerical fine tuning experiments.

Testing the fit of a model with the

Bootstrap:

Please choose the Job Definition > Bootstrap GoF menu entry like shown

in the figure below:

Testing the fit of a model with  the Bootstrap: 33
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This will open the Bootstrap Dialog, which allows to specify the number

of simulations and other paramters in order to perform the parametric

bootstrap test for Chisquared Goodness of Fit statistics.

The bootstrap will be performed for four different Chisquared

Goodness−of−Fit statistics, namely the Pearson X2, the Cressie−Read

statistic, the Likelihood−Ratio and the Freeman−Tukey statistic. PLEASE

34 Testing the fit of a model with  the Bootstrap:
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NOTE that only the Pearson X2 and the Cressie−Read statistic work well

when the data are extremely sparse!

In this example, 40 bootstrap samples are generated. The number of

iterations starting from the parameter estimates of the real data are only 75

in this example, as the original data's estimates are extremely good starting

values for the simulated dataset, which was generated using exactly these

parameters. The data are generated based on CML estimates

(Conditional−Maximum−Likelihood), so that the WLE − person

parameters are only used for the extreme rawscore groups.

Start Run:

Choose Start > Start Job (or function key F9) in order to make WINMIRA

start computations with the current settings.

Start Run: 35
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This will minimize WINMIRA's main window and will open the run

dialog, which is used to display some information about the computational

process.

Finally, the main window of WINMIRA will reappear and the programs

output file will be shown in a second child window within the main form.

The output file shown in the active child window contains descriptive

statistiscs of the dataset, model parameters estimates and information about

the model data fit. This file is already saved, usually in the same directory

where the dataset is found, unless some other directory and filename was

specified in the filename dialog.

36 Start Run:
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Parameter constraints

The Job Definition > Parameter constraints menu entry

opens a confirmation message window in order to make sure that

parameter constraints should be used by expert users only and all

computations carried out with parameter constraints should be examined

carefully:

Winmira offers three types of parameter constraints:

 WINMIRA 2001



• either category probability constraints,

• or constrain item parameter and threshold distances,

• where both can have simultanous constraints imposed on class sizes

Probability constraints

WINMIRA 32 pro provides the means to impose both parameter fixations

and equality constraints on the class specific response probabilities. The

picture below shows the different ways to enter fixations or equality

constraints in WINMIRA 32 (even though the constraints seen below

might not make too much sense, the primary reason for entering the

numbers and letters in this way is to show what can be done in one single

screen shot).

38 Probability constraints
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Parameter fixations are entered as numerical values between 0.000 and

1.000 in the constraints dialog. Equality constraints are one letter entries in

the constraints dialog. All cells, or better the corresponding class specific

response probabilities, carrying the same letter (CaSE SenSitiVE) will be

set to the same numerical value in each iteration of the estimation

algorithm. Nevertheless, certain regularity conditions are imposed

afterwards. If you try to constrain two items of extremely different

difficulty to carry the same reponse probabilities, the algorithm will

nevertheless assume that the overall response probabilities are like given

by the dataset and will adapt the equality constraints to match the overall

probabilities.

Please click through the classes by means of the Class up down arrow on

the top left of the window panel to see all constraints. Constraints can be

made within and across classes.

Probability constraints 39
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Logistic parameter constraints:

WINMIRA 32 pro provides the means to impose both parameter fixations

and equality constraints on item difficulties as well as on threshold

distances when estimating polytomous models. The picture below shows

the constraint dialog when using it for these logistic constraints.

Parameter fixations are entered as numerical values (both negative and

positive, in contrast to probability constraints) in the constraints dialog.

Equality constraints are one letter entries in the constraints dialog. All

cells, or better the corresponding class specific response probabilities,

carrying the same letter (CaSE SenSitiVE) will be set to the same

numerical value in each iteration of the estimation algorithm. The example

shows that all item locations are equal (all cells show an 'a') in class 3. In

40 Logistic parameter  constraints:
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addition, the threshold distances are also carrying constraints. Items VAR9

to VAR13 are constraints analog to the Rating scale model, whereas items

VAR4 to VAR8 carry constraints like in the equidistance model. This

shows that constraining parameters can be more flexible than using the

models 'hard−wired' in WINMIRA. Nevertheless, be aware that using

constraints can also mean that one specifies a model that cannot be

estimated, or that at least will slow down or disturb the convergence of the

algorithm .

Please click through the classes by means of the Class up down arrow on

the top left of the window panel to see all constraints. Constraints can be

made within and across classes.

Class size constraints

The types of parameter constraints, probability constraints and logistic

item and threshold parameter constraints, cannot be mixed. Nevertheless,

both types allow constraining the clas sizes to constants like it is shown in

the following picture.

Class size constraints 41
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In this example, the size of class 3 was fixed at 20%, or 0.200. Equality

constraints are also possible. Please make sure that class sizes have to add

up to 1.000. Please click through the classes by means of the Class up

down arrow on the top left of the window panel to see all constraints.

Constraints can be made within and across classes.

42 Class size constraints
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The rationale of Mixture Distribution Models

Mixture distribution models (MDM) relax the assumption that the

observed data were drawn from a homogeneous population. It is rather

assumed that the sample is drawn from an unknown mixture of

distributions (Everitt & Hand, 1981), which are reffered to as latent classes

in this context. Mixture distribution models are more flexible as compared

to classical statistical modeling, where we usually apply a statistical model

to a set of data and assume that the model is valid for the data and that all

model parameters (e.g. factor loadings, path coefficients, item parameters)

are the same for all individuals of the population. Discrete MDM, in

contrast, are based on the idea that different sets of model parameters are

valid for different subpopulations. In the case of latent subpopulations,

their number is not known but must be identified when the model is

applied. These subpopulations are solely defined by their property of being

homogeneous in the sense that a particular model holds for this latent

class. In particular, latent classes are not defined by manifest variables like

gender, age or socio−economic status, where the partition is done by a

manifest observable moderator variable and parameter estimation can be

performed for each manifest group. Hence the aim of MDM is twofold: to

'unmix' the data into homogeneous subpopulations and to estimate the

parameters for each subpopulation separately. The general structure of
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discrete MDM is

P(X = x) = ∑Gg = 1 πg P( X = x| θg ) (1)

where x = (x1,...xk) is a vector valued observation on k variables (items),

and q g is the group (class) specific vector valued parameter of the

conditional distribution in class g. It is assumed that the overall probability

of an observation x is a weighted sum of conditional probabilities within

these subpopulations. The weights πg are the mixing proportions (which

are often referred to as class sizes) and represent the relative sizes of the

subpopulations. The family of discrete MDM can be divided into at least

two groups of models. Firstly, MDM which assume the same type of

model in all subpopulations but with different sets of model parameters

(these models are commonly referred to as MDM). Secondly, discrete

MDM which can be defined with a different type of model in each

subpopulation. WINMIRA 32 can handle both types of MDM, namely any

possible combination of the class specific models available in the program

can be specified and analyzed with WINMIRA 32, as long as there are no

identification problems. The section on What can LCA be used for gives

examples illustrating the capabilities of the mixture distribution models.

44 The  rationale of Mixture Distribution Models
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Parameter estimation in MDM

Parameter estimation in discrete Mixture Distribution Models is quite

complicated and time consuming. An iterative algorithm, the

EM−algorithm (E−stimation / M−aximization or iterative proportional

fitting), has to be employed, because the latent classes are not known

beforehand. The EM−algorithm works as follows:

• 

Within each E−step, the expected frequencies of the sufficient

statistics for the model parameters are computed for each

subpopulation. This is usually done by computing posterior

probabilities given the current parameter estimates.

• 

Within each M−step, Maximum Likelihood estimates in each

subpopulation are computed (by means of some standard procedure

like Newton−Raphson) given the sufficient statistics from the

previous E−step.

The iteration procedure is based on the first and second order partial

derivatives of the likelihood function L of the "complete" crosstable, i.e.

Parameter estimation  in MDM 45
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the observed crosstable extended by the latent class variable. From the

matrix of the second order derivatives, only the diagonal elements are used

so that the iteration rule for a model parameter µ is:

µt+1 = µt −[(L' (µ))/(L'' (µ))] ,

where L'(µ) is the first partial derivative, L''(µ) the second order derivative

with respect to the parameter µ, and µt the estimate of µ in iteration step

t. The number of iterations is restricted to 10 within each M−step for the

Latent Class models and 1 for the Mixed Rasch models. The parameter

estimates of the previous M−step serve as start values for succeeding

M−steps.
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The LCA for ordinal variables

WINMIRA 32 is capable of estimating the parameters of 8 different latent

class models for manifest variables with ordered categories. Four of these

models assume class specific and four models assume class independent

distances between response categories. The models in each of the two

groups result from the assumption of :

• ordered categories only,

• equidistant categories for each variable,

• equal distances between categories for all variables,

• scaled distances between categories but different dispersions for each

variable.

WINMIRA 32 provides

• parameter estimates for all models,

• response probabilities,

• various goodness of fit statistics (Likelihood Ratio, Cressie−Read,

Pearson X2 and Freeman−Tukey)

• capabilities for performing bootstrap (or monte−carlo) tests for these

statistics,
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• information criteria (AIC, BIC, CAIC),

• output of most likely class membership for each person.

The threshold approach in the ordinal LCA

The 8 LCA models covered by LACORD (LAtent Class analysis for

ORDinal variables) which are included in WINMIRA 32 can be derived

from a very simple assumption regarding the ratio of response probabilities

of each two adjacent categories,

(pvix )/(pvi(x−1) ), for x=1,...,m,

where pvix is the probability of person v for scoring in category x on item i.

As in log−linear models, it is assumed that the logarithm of this ratio is a

linear function of some parameters depending on the variable i, the

category x and the latent class g to which a person v belongs. Without

further specification of that linear function fgix, the assumption may be

written as

ln( [(pvix )/(pvi(x−1) )] ) = fgix , for x in (1,...,m) (10)
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This simple approach leads to a very handy model structure, because it can

be derived without further assumptions that the category or response

probabilities in a latent class g are:

pgix = [(exp( ∑xs = 0fgis ))/(∑mt = 0exp( ∑ts = 0fgis ) )] (11)

Although this is a very straightforward model derivation, the parameter

interpretation remains somewhat diffuse. All that is known about the linear

components of fgix (which have not been specified yet) is that the response

probability of a category x in relation to its preceding category increases

monotonously with fgix. A very convincing interpretation of the model

parameters is found with the transformation of model assumption

(equation 10 above) into its equivalent form

[(pvix )/(pvix +pvi(x−1) )] = [(exp(fgix ))/(1+exp(fgix ))] (12)

The ratio defined above is referred to as a threshold probability, because it

is the conditional probability of choosing x, if only x or x−1 are

considered. This can be interpreted as passing the threshold from the lower

category to reach the higher category.

The term on the left hand side varies between 0 and 1, and denotes a
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probability, namely the conditional probability of responding in category

x, if the response is either in x or in x−1. This conditional probability is

usually referred to as threshold probability, because it can be interpreted as

the probability of passing a threshold between two response categories. It

equals 0.5 if both categories have the same probability, 0.0 if nobody

passes and 1.0 if all people pass the threshold to x. The latter form of

equation 11 shows that the threshold probabilities depend on the model

parameters fgix and their dependency is defined by the smooth logistic

curve known from the Rasch model. Hence, the model parameters fgix can

be interpreted as defining the location of threshold x on a latent continuum.

This was outlined in some detail in order to stress the point that a threshold

assumption is not necessary to derive the model, but it helps to interpret

the parameters. The model itself only requires knowledge of which

categories are adjacent and, in that sense, requires ordered categories.

[more]
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The threshold approach in the LCA (cont.):

If the class specific response probabilities (equation 11) are substituted for

the category probabilities in the general latent class model,

Pvix=ΣGg=1 Pgix

where πg is the relative size of class g, the model structure underlying all 8

latent class models of WINMIRA 32 is obtained. They only differ in their

specification of fgix, which is outlined in the following.

If there should be no restriction at all, fgix itself may be considered a model

parameter and nothing more than a reparameterization of the polytomous

LC−model is obtained. In the ordinal model of the Latent Class module of

WINMIRA 32, however, another reparameterization is used in order to

make the results comparable with the other models:

(8) fgix = µig +λixg and Σx λixg = 0.

In this specification, µig can be interpreted as the mean location of all

thresholds of variable i in class g and, because of the normalizing

condition, the λixg parameterize the deviation of threshold x from that
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mean. Model (4) follows from equating the threshold distances (not their

mean location) over classes:

(4) fgix = µig +λix and Σx λix = 0

Both models (8) and (4) assume an order of the categories insofar as for

model derivation it must be known which categories are adjacent (see the

first formula in this chapter). Neither of the models require ordered

categories in the sense that the thresholds are ordered, i.e. have decreasing

(easiness−) parameters fgix. Whether the latter is the case can be seen from

the results of a data analysis. Models (1) and (5) result from models (4)

and (8) by equating the threshold distances over the variables:

(5) fgix = µig +λxg and Σx λxg = 0,

(1) fgix = µig +λx and Σx λx = 0.

Models (2) and (6), however, are not so easily obtained, since simple

equating over categories would make the index x disappear from the model

equation. An appropriate coefficient is required, generating the individual

threshold location by means of the mean location µig and a distance

parameter δig. This coefficient is (m+1−2x), in order to avoid non−integer
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coefficients, only half the distance is parameterized, so that the models are

(2) fgix = µig +(m+1−2x)δi

and for class specific distances

(6) fgix = µig +(m+1−2x)δig .

Models (3) and (7), finally, are a combination of these last models and will

not be derived in detail here:

(3) fgix = µig +λx +(m+1−2x)δi with Σiδi=0

(7) fgix = µig +λxg +(m+1−2x)δig with Σiδig=0

The normalizing condition for the δig−parameters is necessary, because the

basic−threshold−distances for all variables are already defined through

the λxg−parameters. The δig's parameterize the deviation of all distances of

a particular variable from the mean distance. The latter parameters may be

interpreted as dispersion parameters, since the dispersion of the probability
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distribution of a variable depends on the widths of its threshold intervals:

the smaller δig is, the closer the thresholds and the greater the dispersion of

that variable. This relationship is more easily understood if the opposite

case is imagined: a large distance between the left and the right threshold

of a category means that it is easy to get in but hard to get out'' of this

category. Hence, the probability distribution has a peak over this category

and, therefore, a smaller dispersion in general.

So far all models of the Latent Class Module of WINMIRA 32 have been

specified. It must be noted, however, that they are usually written in a

slightly different way. This different notation is obtained if the fgix−terms

are cumulated, as indicated in equation 1. Since

∑xs=1 µig = xµig and ∑xs=1(m+1−2s) = x(m−x)

model (2) may be written as

(2') pvix = ∑gπg [(exp(xµig +x(m−x)δi ))/(∑xexp(xµig +x(m−x)δi ) )] .

In order to get rid of the summation symbol when the fgix−parameters have

to be summed up, cumulative threshold parameters
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agix = Σxs=1 fgis

may be defined. This notation is helpful for deriving equations for

parameter estimation, but they have no direct interpretation. The

parameters provided in the output file and in the graphical display of the

item parameters are fgix−parameters as introduced in the formulae above.

What does the LCA−part of the program?

Parameter estimation and related computations can only be made for a

fixed number of latent classes, since the number of classes in LCA is not a

model parameter but an a−priori model assumption.

Starting values for parameter estimation are generated by a random

number generator. The program can estimate the parameters for the 8

different latent class models for ordinal variables by using an extended

EM−algorithm. The extension consists of a short Newton−algorithm

within each M−step for maximizing the likelihood function.

Some models cannot be applied if either the number of categories is too

small (less than 4) or if the manifest variables have different numbers of
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categories.

In the latter case only models (4) and (8) are applied assuming ordered

categories without further restrictions. In case of only two categories for all

variables, the first model is sufficient to reproduce the parameters of the

unrestricted, dichotomous LCA, because two categories have only one

threshold and no threshold distance. In case of 3 categories, models (1),

(2), (5), and (6) can be estimated, because 3 categories have 2 thresholds

and one distance. Model (6) is equivalent to the unrestricted LCA in this

case.

What can LCA be used for?

The Latent Class Analysis may be applied whenever a latent, i.e.

non−observable typology or classification is to be identified for a set of

persons or objects which are characterized by several categorical variables.

Examples are:

• 400 persons responses to a 9−item questionnaire aimed at assessing

their attitudes towards ways of environmental protection. Each item

is rated on a 5−point scale. Two groups of persons are assumed,
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which attribute responsibility for environmental protection to

external or to internal factors respectively.

• 1000 individuals rated their proximity to four political parties on a

5−point scale. The question is whether the four parties can be located

on a latent continuum or whether latent types of persons with

different patterns of proximity have to be assumed.

• All patients of a psychiatric clinic were rated according to a list of

clinical symptoms. The aim is to analyze whether the classical

psychiatric categories of mental disease can be reproduced by

identifying latent types of persons with corresponding symptom

patterns on the basis of these data.

These examples share

• a relatively large number of persons (observations),

• a relatively small number of manifest variables, which can be

responses in a test or questionnaire, expert ratings, standardized

behavior observations, or all kinds of observable variables like hair

color, sex or social status,

• that these variables are discrete, i.e. they have a limited number of

categories and each individual has one (and only one) value or

category on each variable, and
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• that a latent classification or typology of the individuals is aimed at,

which is 'latent' because no observable or manifest variable can

produce this classification. It is probabilistic because probabilities of

membership in the latent classes instead of deterministic assignments

are obtained for each individual.

The least restrictive model in the program is the unrestricted latent class

model, which can be applied to unordered categories (nominal scale

variables) or be used to check if categories are ordered. If the categories of

all variables are defined in the same way and, hence, all variables have the

same number of categories, eight different models can be computed and

checked for their fit to the data (see below). The program's use lies in the

identification of a latent classification for the individuals.

So far it is only a general description of latent class analysis and its results.

One property of the Latent Class module of WINMIRA 32 is its

applicability to ordered categories. However, it is not known whether the

distances between the categories are the same between all categories,

whether the distances have the same size for all variables, nor whether they

are the same for all groups of persons. A systematic combination of these

three types of restrictive assumptions leads to a system of 8 models for

ordinal variables.
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Beginning with the latter, the distinction of category distances which hold

for all persons and class−specific distances divides the system in two

groups of four models each., i.e.

class independent distances

and 

class specific distances.

The assumption that all manifest variables have the same distances

between categories gives models (1) and (5) (called rating scale LCA in

the model selection menu).The so−called equidistance assumption, i.e. all

categories of a manifest variable have the same distance, yields models (2)

and (6). (called equidistance LCA).A scaling concept which goes back to

Thurstone's method of successive intervals assumes that the categories

have their own distances as a characteristic of the response format, but the

variables have their own dispersions. If no assumption about category

distances at all is made models (4) and (8) are obtained, where (8) is the

unrestricted latent class model and (4) makes the assumption that the same

distances hold for all persons, whatever they are for a particular variable

and a particular category.

It can be decided empirically which of these assumptions is most
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appropriate to the data. Please refer to section on the Bootstrap or to the

section describing an Example Output file for further information on

model selection.
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The Mixed Rasch Model

The Mixed−Rasch Model extends the Rasch model to a discrete mixture

model. The main goal of applying this model is to classify a possible

inhomogeneous sample into Rasch−homogenous subsamples.

The Mixed Rasch model can be used for very different tasks, e. g.

• for testing model fit of the Rasch Model (by comparing the one−class

and the two−class solution),

• for identifying a Rasch scaleable subpopulation (or separating a class

of unscaleables, respectively),

• for analyzing rating data, when different subsamples have different

response sets,

• for measuring a latent ability, when different people apply different

solution strategies for solving the items, or

• for profile analysis of questionnaire items with ordinal response

formats.

WINMIRA 32 can be applied to dichotomous and polytomous data. All

characteristics of the Rasch Model are preserved within the latent classes,

so that the program can also be used for ordinary Rasch Analyses (by
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computing the one−class solution).

The dichotomous Mixed Rasch model

The model equation of the MRM for dichotomous item

responses xvi ∈ {0,1} is

P(xvi) = ∑Gg = 1 πg ( [exp(xvi(θvg −σig))/(1+exp(θvg −σig) )] ) (3)

where θvg is the person parameter of subject v in latent class g and σig is

the item difficulty of item i in latent class g (Rost 1990). The latent classes

are identified by means of an EM−Algorithm and the item − or threshold

parameters are computed by means of conditional maximum Likelihood

(CML) estimation within each M−step.The CML estimation requires

the latent score distributionslatentscore, i.e., the distributions of test scores

in each latent class, to be estimated in order 'to condition out' the person

parameters in the CML−procedure. Then, the probability of a response

pattern x can be written as:

P(x ) = ∑Gg = 1 πg πrg [exp(∑ki = 1 xi σig )/(γrg )] (4)
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with response pattern x=(x1,...,xk), latent score distribution parameters πrg,

the probability of score r in class g, and symmetric function γrg of

order r in class g.

The polytomous Mixed Rasch model

WINMIRA can be used to estimate model parameters for different

polytomous (ordinal) Rasch models the 'rating scale model' (Andrich

1978), the 'equidistance model' (Andrich 1982), the 'dispersion model'

(Rost 1988) and the 'partial credit model' (Masters 1982) as well as their

mixture generalizations (compare Rost 1991, von Davier & Rost, 1995).

Generalized to mixture distribution models, the polytomous Rasch models

can be written as follows:

P(x) = ∑Gg = 1πg πrg [exp(∑ki = 1∑xs = 1αixg )/(γrg )] (5)

with response pattern x = (x1,...xk), xi ∈ {0,...,m}, πrg probability of score r

in class g, and symmetric function γrg of order r in class g. In case of the

most restrictive model, i.e. the mixed Rating Scale Model, αixg is

decomposed as follows:
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αixg = µig +λxg

for all g and x ∈ {1,...,m}, with the condition ∑x λxg = 0 to avoid

indeterminacies. The category parameters λxg parameterizes the easiness of

threshold x in class g. In the program output, the combined

parameters αixg are printed for each model, so that different models can be

compared more easily. The second model, i.e. the mixed Equidistance

Model, has the decomposition:

αixg = µig +(m+1−2x)δig

for all g and x ∈ {1,...,m}. The third model, i.e. the mixed Dispersion

Model, has both equidistance and threshold parameters and is decomposed

as follows:

αixg = µig +λxg +(m+1−2x)δig

for all g, x ∈ {1,...,m}. In the fourth model, i.e., the mixed Ordinal (or

Partial Credit) Model, all αixg are estimated separately, there is no

restriction except the normalizing condition
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The Rating Scale Model

(αixg = µig +λxg)

The Rating Scale Model assumes that all threshold distances are constant

acrosss the items, which is indicated by the missing item index i for the

threshold parameters λxg. The figure below shows the category

characteristic curves (CCCs) for two items as an example, where the

difference between threshold 1 and 2 is 2.0 for both items, the distance

between threshold 2 and 3 is approx. 3.5 for both items.
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[more]

The Equidistance Model

(αixg = µig + (m+1−2x)δig)

In the Equidistance Model (formerly called Dispersion Model), all

threshold distances are assumed to be constant within each item, as

indicated by the missing threshold index x for the dispersion

parameters δig. The figure below shows an example where the threshold

distance is 2.0 units for the first and 3.5 units for the second item.
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[more]
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The Dispersion Model

(αixg = µig +λxg +(m+1−2x)δig)

In the Dispersion Model (formerly called Successive Interval Model), there

are both equidistance parameters δig and threshold parameters λxg.

The λ−parameters define basic distances for the thresholds, which can be

increased or decreased by the δ−parameters: negative values δ <

0 decrease the distances, positive values δ > 0 increase the distances. In

this example, the second threshold distance is larger than the first one

within both items.
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[more]

The Ordinal (Partial Credit) Model

(αixg without restrictions)

In the Ordinal or Partial Credit Model, there is one parameter αixg for each

threshold of each item, without any restriction except the inevitable

normalizing conditions.
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Person Parameters

The previous subsection presented the model equation of the mixed Rasch

model in the conditional notation. Conditional maximum likelihood
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estimation (CML) is used in WINMIRA in order to avoid estimating

biased person and item parameters simultaneously. This ensures that

consistent item parameters are obtained which can be used to obtain person

parameter estimates.

Estimation of person parameters is carried out by an UML−procedure after

the CML−estimation of the item parameters is completed. Maximum

likelihood estimates (MLE) as well as weighted likelihood estimates

(WLE, see Warm, 1989) can be computed with WINMIRA. Warm’s WLE

estimates have, as compared to the MLE estimates, two main advantages:

First, their bias is smaller (Warm 1989, Hoijtink & Boomsma, 1995), and

second, they produce reasonable estimates even for the two extreme

response patterns, i.e., for the patterns with zero and maximum score.

The estimation of person parameters is optional and can be chosen with the

corresponding option in the Output Options menu of WINMIRA. If

"compute person parameters" was chosen, a table with MLE and WLE

estimates along with the corresponding standard errors will be included in

the output file for each Rasch model class. The person parameter estimates

are also printed in a separate file if append person parameters to

datafile was selected in the options menu. This file can be used in

subsequent analyses.
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Latent Score Distributions

The latent score distributions determine the score probabilities in each

Rasch type latent class. These score probabilities are necessary in the

conditional maximum likelihood estimation for conditioning out the person

parameters in order to obtain unbiased item parameter estimates. The latent

score distributions can be fully parameterized (i.e. one parameter for each

score in each latent class) or estimated by assuming a two−parameter

model. According to this restricted model, the score distribution within

each class g is parameterized by a location parameter τg and a dispersion

parameter δg, assuming that the following relationship holds:

 (9)

where (m+1) is the number of response categories, k is the number of

items,g(r,mk) = 4r(mr−r)/(mk)2  normalizing coefficient.

The parameters of this distribution have the mathematical property of a
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location parameter (τ) and a dispersion parameter (δ). The following figure

shows the shape of the score distribution as a function of 4 different sets of

parameters. It can be seen that the model is capable of approximating very

different shapes like symmetric unimodal, extremely "dislocated" and

u−shaped distributions.

A special feature of this parameterization is the relative invariance of shape
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of the score distribution w.r.t. how many score frequencies have to be

fitted. In the figure above, the same parameters were used to smooth 14

and 88 raw score frequencies in each of the four diagrams.

Category Characteristic Curves

The socalled category−characteristic curve (CCC) can be used to visualize

the relationship between item parameters and response probabilities. The

x−axis represents the latent dimension and the y−axis shows the response

probability for each category x ∈ {0,..,m} . The intersections of the

response probability curves are given by the item parameters in the

de−cumulated notation (i.e. the threshold parameters). In the example

below, these thresholds take the values −1,1 and 4.5 respectively.
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Given a person with parameter θ, the response probability for this person

can be directly taken from the CCC, as both the item (threshold)

parameters and person parameters are located on the same latent dimension.

[proceed]

The Q−Index

The item Q−index (Rost and von Davier, 1994) is an item fit index which

makes use of the statistical properties of Rasch models, i.e., parameter

separability and conditional inference. The item−Q includes no assumption

about the scale level of the response variable. Instead, it is based on the
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log−likelihood of the observed item−pattern. It can be applied to any

unidimensional Rasch model like the dichotomous model, the rating scale

model (Andrich 1978), the equidistance model (Andrich 1982), the partial

credit model (Masters 1982) or dispersion model (Rost 1988). The fit of an

item i is evaluated with regard to the conditional probability of its observed

item response vector, i.e.

p(xi ,ni0 ,...,nim ) = exp( ∑x xviβiv ) /τ(β;ni0 ,...,nim )

where the denominator is given by the symmetric functions of order

(ni0..nim.) of the person parameters. This conditional pattern−probability is

standardized twice. First, it is divided by the maximum probability a

pattern with a particular score distribution can reach, i.e. the probability of

the optimum−pattern, x OPT or Guttman−pattern. The Likelihood ratio

LRi,OPT = p(x i |nix )/p(x OPT|nix )

then, approximates 1 (one) for an increasing pattern probability. The

logarithm of this Likelihood ratio is standardized again, i.e. it is divided by

the smallest possible Likelihood ratio

LRPESS,OPT = p(x PESS |nix )/p(xOPT |nix )
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where x PESS denotes the pessimum−pattern or the anti−Guttman−pattern

which is the pattern with lowest probability. The ratio of both

log−likelihood−ratios is

Qi = ln[P(Xi |nix )/P(XOPT |nix )] / ln[P(XPESS |nix )/P(XOPT |nix )]

= [∑V(xvi −xV,OPT )βV] / [∑V(xv,PESS −xV,OPT )βV]

which is a very simple function of the ability parameters. Q varies between

0 and 1, where 0 indicates perfect (Guttman pattern) fit and 1 indicates

perfect misfit (anti−Guttman pattern) or deviance from the model. A value

Q = 0.5 indicates independence of the trait and the item, i.e., random

response behavior. Rost & von Davier (1994) presented another

standardization of the item Q−index with zero mean and unit variance and

which can be assumed to be asymptotically normal. In WINMIRA, both

the Q−index as well as its asymptotically normal standardization are listed

in a table in the output file if the respective output option is activated.
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The Hybrid Model

The Hybrid Model (Yamamoto, 1989) assumes that the data can be

described by a mixture of an IRT model (like the Rasch model) and the

Latent Class Analysis. This implies that each observed response pattern

either stems from a latent subpopulation where the IRT model holds or that

the response pattern can be fitted by one of the latent classes in the LCA

part of the model.

Hybrid mixtures of IRT models and Latent Class models can be written as

P(X = xv) = ∑Gg=1 πg PIRT(X = x| θvg) + ∑Cc=1 πc PLCA(X = x|c)

where ∑Gg=1 πg + ∑Cc=1 πc = 1, i.e., the sum of all class sizes is one. The

first mixture sum stands for the IRT mixture components and the second

sum stands for the Latent Class type mixture components.

In WINMIRA, Hybrid models can be estimated for polytomous data, and

additionally, models with more than one IRT class can be specified (v.

Davier, 1994). This type of Hybrid model integrates a finite number of

mixed Rasch models and a finite number of Latent Class models, so that

each latent class of this new model family can have it's own structure.

 WINMIRA 2001
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Using the output of WINMIRA

The output files generated by WINMIRA are organized as follows: An

ASCII text file contains tables with summaries of the sufficient statistics,

the final parameter estimates and Goodness−of−Fit statistics. In addition,

graphs of item and person parameters can be produced and saved as

bitmaps or metafiles. Finally, person specific information can be appended

to the data file.

• printing output files

• graphical output

• append variables to the datafile

• example output file (a little outdated)

Printing the output

Please print output files by choosing the File > Print Output menu entry.
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Alternatively, you can use the printer speed button in the panel.

Printing the ouput will produce a number of pages with all tables contained

in the output file. Please use the print option in the graph windows if

hardcopies of the graphical output is also required.

Display Graphical Output

By choosing any of the function keys F5, F6 or F7 or the corresponding

entries in the graphs menu, plots of class specific model parameters are

displayed. The plots are resizeable and can be printed and/or saved to a file

(see below).

82 Display Graphical Output

 WINMIRA 2001



"Category probabilities" or the function key "F5" displays a histogramm of

the class specific response probabilities for all items.

"Item parameters" or "F6" displays class specific threshold parameters.

The spin button on the left side of the graphic control panel can be used to

select the latent class to be displayed.
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Each graph can be printed or saved directly from within the graphs control

panel. The person parameter graph shows the absolute raw score

frequencies for each class and, if the class was assumed to be Rasch

homogenous, a simultanous person parameter plot for the Maximum

likelihood and the Warm person parameter.

84 Display Graphical Output

 WINMIRA 2001



Example Output file

A Hybrid model combining ordinal Rasch models and Latent Class

models:

Below, an output file as produced by WINMIRA 32 is commented in order

to give a guideline for reading the results of an analysis. To learn more

about discrete mixture distribution models, a book like "Lehrbuch der

Testtheorie" by J. Rost is highly recommended. To learn more about using

the program WINMIRA 32, please refer to the on−line manual or the user

manual.
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//

// WINMIRA 32 beta v0.97

// (c) 1998,1999 by Matthias von Davier

// IPN − institute for science education

// Olshausenstrasse 62

// 24098 Kiel

// Germany

// email: vdavier@ipn.uni−kiel.de or rost@ipn.uni−kiel.de

//

// date of analysis: 24.11.98 time : 12:05:01

//

Filenames:

data: simula9x.dat

output: simula9x.out

member: simula9x.mem

patterns: simula9x.pat

number of persons : 2001

number of items : 10

number of categories : 4

number of classes : 3

max. number of iterations : 350

accuracy criterion : 0.0010
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random start value : 4321

The output file starts with a summary of the data specification and a description of the

selected model. In this example, three latent classes are assumed with different models

holding in each class.

variable labels, positions and sample frequencies:

| | n of | rec−| start | end | categories

no.| label | cats | ord | col. | col. | 0 | 1 | 2 | 3 | N

____|_____________|______|_____|_______|_______|______|______|______|______|________|

01| item01 | 4 | 1 | 3 | 3 | 781 | 509 | 350 | 361 | 2001

02| item02 | 4 | 1 | 4 | 4 | 798 | 476 | 379 | 348 | 2001

03| item03 | 4 | 1 | 5 | 5 | 742 | 497 | 402 | 360 | 2001

04| item04 | 4 | 1 | 6 | 6 | 691 | 551 | 388 | 371 | 2001

05| item05 | 4 | 1 | 7 | 7 | 697 | 545 | 394 | 365 | 2001

06| item06 | 4 | 1 | 8 | 8 | 616 | 566 | 451 | 368 | 2001

07| item07 | 4 | 1 | 9 | 9 | 601 | 557 | 436 | 407 | 2001

08| item08 | 4 | 1 | 10 | 10 | 590 | 539 | 434 | 438 | 2001

09| item09 | 4 | 1 | 11 | 11 | 571 | 566 | 427 | 437 | 2001

10| item10 | 4 | 1 | 12 | 12 | 534 | 546 | 453 | 468 | 2001

number of cases with invalid data: 0

The table above shows the label and the position in the datafile for each
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variable in the scale as defined by the user. The data file may have more

than one row per observation, so that both the record (row) and the start

and end columns of the variables have to be specified.

saturated likelihood : −14815.1431

The saturated likelihood is the theoretical maximum of the likelihood

function that can be reached. This maximum can only be met by the

saturated model by assuming one parameter for each observed response

pattern. The saturated likelihood is used in the likelihood ratio

Goodness−of−Fit test.

number of different patterns : 1834

number of possible patterns : 1048576

The ratio of observed to possible patterns indicates that many of the

possible pattern have zero frequencies, i.e. they haven't been observed.

This implies that traditional Goodness−of−Fit statistics (see below, at the

end of this example output) can not be used for testing a model for this

dataset.

Number of iterations needed: 117
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117 iterations were needed to reach the default accuracy criterion and

terminating estimation.

fitted model: Hybrid model in 3 latent classes.

A discrete mixture of different models for each class was fitted in this

example. The model of class one and two is a polytomous Rasch model

(the Rating Scale model in this example). In the third class, local

independence according to the ordinary Latent Class model is assumed.

Final Estimates in CLASS 1 of 3 with size 0.49311

====================================================

(MIRA) Mixed Rasch Model:

according to the rating scale model

The class size indicates that about 50 percent of the population can be

fitted by a polytomous Rasch model which was assumed to hold in this

class.

Expected Score Frequencies and Personparameters:

Raw− | Expected | MLE− | SE(MLE) | WLE− | SE(WLE)

score | freq. | estimate | | estimate |

_______|__________|__________|__________|__________|__________
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0 | 28.92 | ******** | ******** | −3.597 | 1.375

1 | 67.99 | −2.957 | 0.984 | −2.550 | 0.795

2 | 68.12 | −2.288 | 0.694 | −2.072 | 0.621

3 | 85.94 | −1.897 | 0.569 | −1.755 | 0.532

4 | 54.58 | −1.614 | 0.499 | −1.512 | 0.477

5 | 62.72 | −1.388 | 0.453 | −1.312 | 0.440

6 | 37.86 | −1.198 | 0.422 | −1.139 | 0.413

7 | 34.08 | −1.030 | 0.399 | −0.983 | 0.393

8 | 27.82 | −0.878 | 0.382 | −0.841 | 0.378

9 | 34.41 | −0.737 | 0.369 | −0.708 | 0.367

10 | 31.17 | −0.605 | 0.359 | −0.582 | 0.358

11 | 38.97 | −0.478 | 0.352 | −0.462 | 0.351

12 | 28.80 | −0.357 | 0.347 | −0.344 | 0.346

13 | 32.78 | −0.238 | 0.343 | −0.230 | 0.343

14 | 28.91 | −0.121 | 0.341 | −0.117 | 0.341

15 | 32.26 | −0.005 | 0.340 | −0.005 | 0.340

16 | 34.43 | 0.111 | 0.341 | 0.107 | 0.341

17 | 30.11 | 0.228 | 0.343 | 0.220 | 0.343

18 | 23.74 | 0.347 | 0.347 | 0.335 | 0.346

19 | 33.34 | 0.469 | 0.352 | 0.452 | 0.351

20 | 27.10 | 0.596 | 0.360 | 0.573 | 0.358

21 | 33.97 | 0.729 | 0.370 | 0.699 | 0.367

22 | 23.65 | 0.870 | 0.383 | 0.833 | 0.379

23 | 31.81 | 1.024 | 0.401 | 0.976 | 0.395

24 | 19.25 | 1.193 | 0.424 | 1.133 | 0.415

25 | 20.26 | 1.387 | 0.457 | 1.308 | 0.443

26 | 8.06 | 1.616 | 0.504 | 1.512 | 0.481
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27 | 0.82 | 1.904 | 0.576 | 1.761 | 0.538

28 | 2.87 | 2.305 | 0.701 | 2.087 | 0.629

29 | 2.00 | 2.987 | 0.993 | 2.581 | 0.807

30 | 0.72 | ******** | ******** | 3.656 | 1.397

The table above shows the expected rawscore frequencies in class 1, the

person parameter estimate and the standard error of estimation of the

individual parameter for all rawscores in class one. In this table, both

maximum likelihood (MLE) and bayes weighted likelihood estimates

(WLE) are shown. The WLE should usually be preferred as they are less

biased and give reasonable estimates even for the to extreme score groups.

In the case of mixture distribution models, the class specific expected

frequencies can not be compared to the observed frequencies, as only the

overall observed frequencies are known. Nevertheless, it can be seen from

the expected frequencies for example, in which class most of the higher

scoring persons belong.

WLE estimates : Mean = −0.726 Stdev = 1.203

Reliability = 0.818

Raw−score : Mean = 10.515 Stdev = 7.672

This is the mean and the standard deviation of the WLE person parameter

and the raw score.

Example Output file 91

 WINMIRA 2001



expected category frequencies and item scores:

Item . | Item`s | relative category

label .| Score | Stdev | frequencies

_______|_______|_______| 0 | 1 | 2 | 3

item01 | 0.54 | 0.84 | 0.646 | 0.216 | 0.095 | 0.043

item02 | 0.65 | 0.92 | 0.602 | 0.205 | 0.135 | 0.058

item03 | 0.75 | 0.99 | 0.561 | 0.213 | 0.140 | 0.087

item04 | 0.82 | 1.02 | 0.525 | 0.233 | 0.140 | 0.102

item05 | 0.93 | 1.07 | 0.478 | 0.238 | 0.157 | 0.127

item06 | 1.13 | 1.12 | 0.404 | 0.229 | 0.197 | 0.170

item07 | 1.24 | 1.15 | 0.367 | 0.224 | 0.210 | 0.199

item08 | 1.33 | 1.18 | 0.348 | 0.212 | 0.205 | 0.235

item09 | 1.47 | 1.17 | 0.290 | 0.222 | 0.216 | 0.272

item10 | 1.64 | 1.16 | 0.239 | 0.198 | 0.244 | 0.319

Sum: : | 10.50

The expected category frequencies show the descriptive characteristics of

the items in each class. Item 1 and item 2, for example, are very difficult in

this class, because about 80 to 90 percent of the individuals choose only

the lowest two categories 0 and 1. These relative frequencies are overall or

mean values, because in Rasch−Model−Classes these relative frequencies

depend on the distribution of the individual parameter in the class.

In the ordinal Rasch model, there is a strictly positive relationship between
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the probability of choice of the higher of two adjacent categories and the

individual parameter. Subjects with a high individual parameter have

higher probabilities for the upper categories than in the table above.

Accordingly, a subject with a low parameter will have higher probabilities

for the lower categories.

threshold parameters: rating scale model

item | threshold parameters

label | 1 | 2 | 3 | location

___________|________|________|________|__________

item01 | 0.468 | 0.861 | 1.419 | 0.916

item02 | 0.229 | 0.622 | 1.180 | 0.677

item03 | 0.035 | 0.428 | 0.985 | 0.483

item04 | −0.086 | 0.307 | 0.865 | 0.362

item05 | −0.280 | 0.113 | 0.670 | 0.167

item06 | −0.609 | −0.216 | 0.341 | −0.162

item07 | −0.779 | −0.386 | 0.171 | −0.332

item08 | −0.917 | −0.524 | 0.034 | −0.469

item09 | −1.134 | −0.741 | −0.184 | −0.687

item10 | −1.405 | −1.012 | −0.455 | −0.957

mean threshold distances: 0.393 0.558

This table shows the item parameter estimates for the Rating Scale model
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in class one. These threshold parameters should be ordered, i.e. the

parameters should decrease from threshold to threshold whenever an

ordered response format is assumed. A decreasing easiness of the threshold

parameters indicates that every response category is representative for an

interval of the individual parameter dimension. The last column is an

overall easiness parameter (computed by summing up all threshold

parameters). Again item1 and item2 seem to be very difficult, that is, they

have a high difficulty parameter.

item fit assessed by the Q−index

itemlabel | Q−index | Zq | p(X>Zq)

___________|_________|__________|___________

item01 | 0.1099 | −0.7154 | 0.76281 | −....!.Q..+ |

item02 | 0.1241 | 0.5296 | 0.29818 | −.Q..!....+ |

item03 | 0.1113 | −0.4274 | 0.66545 | −....!Q...+ |

item04 | 0.1157 | 0.2674 | 0.39459 | −..Q.!....+ |

item05 | 0.1026 | −0.5451 | 0.70715 | −....!.Q..+ |

item06 | 0.1014 | 0.0200 | 0.49201 | −...Q!....+ |

item07 | 0.0995 | 0.1398 | 0.44439 | −...Q!....+ |

item08 | 0.0927 | −0.7459 | 0.77213 | −....!.Q..+ |

item09 | 0.1052 | 0.9727 | 0.16534 | −Q...!....+ |

item10 | 0.0886 | 0.1952 | 0.42261 | −...Q!....+ |

−?:p<0.05, +?:p>0.95
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−!:p<0.01, +!:p>0.99

The table above shows the Q−Index, a class−specific item−fit measure for

Rasch models. The Q−index lies between zero (indicating perfect

discrimination, i.e., a Guttman − pattern) and one (indicating perfect

"anti−discrimination"). A value of 0.5 indicates no relationship between

the individual parameter and the reaction to the item. The Zq column is a

transformation of the Q−index that is approximative normally distributed if

the Rasch model holds for the respective item. High positive values

indicate that the item discrimination is lower than assumed by the Rasch

model (under−fit), negative values indicate higher discrimination than

assumed (over−fit).

In this example, all items seem to fit fairly well. Misfitting items can be

detected by examining the Zq value in the table above. High positive

values indicate lower discrimination than expected. The Zq transform of

Q−index for items detects very small deviations of the item characteristic

with increasing power (i.e. sample size). Therefore, an item should be

removed from the scale only after examining the items content and

additional information from the estimated model (e.g. "strange" category

frequencies or non−monotone threshold parameters).
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Final Estimates in CLASS 2 of 3 with size 0.28155

====================================================

(MIRA) Mixed Rasch Model:

according to the rating scale model

Following now is the output for latent class 2. This class is expected to

include about 30% of the sample. The model assumed in this class is the

rating scale model again. Therefore, a detailed comment is omitted in the

subsequent output for class 2 and continued for latent class 3, as that class

is assumed to follow a different model, namely the traditional latent class

model.

Expected Score Frequencies and Personparameters:

Raw− | Expected | MLE− | SE(MLE) | WLE− | SE(WLE)

score | freq. | estimate | | estimate |

_______|__________|__________|__________|__________|__________

0 | 2.08 | ******** | ******** | −4.101 | 1.474

1 | 0.01 | −3.321 | 1.029 | −2.940 | 0.871

2 | 2.87 | −2.570 | 0.746 | −2.368 | 0.688

3 | 0.01 | −2.110 | 0.623 | −1.974 | 0.592

4 | 12.25 | −1.769 | 0.549 | −1.667 | 0.530

5 | 18.72 | −1.495 | 0.500 | −1.415 | 0.486

6 | 25.30 | −1.264 | 0.463 | −1.198 | 0.453
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7 | 29.29 | −1.063 | 0.435 | −1.008 | 0.428

8 | 37.70 | −0.884 | 0.413 | −0.838 | 0.408

9 | 24.28 | −0.720 | 0.395 | −0.682 | 0.392

10 | 32.38 | −0.570 | 0.381 | −0.538 | 0.379

11 | 27.25 | −0.429 | 0.370 | −0.403 | 0.368

12 | 44.25 | −0.295 | 0.361 | −0.275 | 0.360

13 | 21.60 | −0.167 | 0.355 | −0.152 | 0.354

14 | 17.67 | −0.043 | 0.350 | −0.033 | 0.350

15 | 24.73 | 0.078 | 0.347 | 0.084 | 0.347

16 | 21.58 | 0.198 | 0.346 | 0.199 | 0.346

17 | 14.06 | 0.318 | 0.346 | 0.314 | 0.346

18 | 25.60 | 0.438 | 0.349 | 0.429 | 0.348

19 | 15.99 | 0.561 | 0.353 | 0.547 | 0.352

20 | 30.30 | 0.688 | 0.359 | 0.668 | 0.358

21 | 29.71 | 0.820 | 0.368 | 0.793 | 0.366

22 | 42.05 | 0.960 | 0.380 | 0.925 | 0.377

23 | 15.51 | 1.111 | 0.397 | 1.066 | 0.392

24 | 19.22 | 1.277 | 0.419 | 1.219 | 0.411

25 | 9.10 | 1.465 | 0.450 | 1.390 | 0.437

26 | 13.68 | 1.687 | 0.495 | 1.587 | 0.473

27 | 6.08 | 1.964 | 0.564 | 1.824 | 0.527

28 | 0.11 | 2.347 | 0.686 | 2.133 | 0.614

29 | 0.01 | 3.001 | 0.974 | 2.595 | 0.782

30 | 0.28 | ******** | ******** | 3.605 | 1.347

WLE estimates : Mean = −0.026 Stdev = 0.890
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Reliability = 0.794

Raw−score : Mean = 14.476 Stdev = 6.398

expected category frequencies and item scores:

Item | Item`s | relative category

label | Score | Stdev | frequencies

_________|_______|_______| 0 | 1 | 2 | 3

item01 | 1.75 | 1.05 | 0.137 | 0.297 | 0.242 | 0.324

item02 | 1.78 | 1.03 | 0.128 | 0.284 | 0.267 | 0.320

item03 | 1.69 | 1.04 | 0.142 | 0.323 | 0.240 | 0.295

item04 | 1.67 | 1.02 | 0.134 | 0.339 | 0.250 | 0.277

item05 | 1.49 | 1.07 | 0.202 | 0.351 | 0.205 | 0.242

item06 | 1.38 | 1.01 | 0.216 | 0.371 | 0.231 | 0.181

item07 | 1.36 | 1.02 | 0.225 | 0.371 | 0.224 | 0.180

item08 | 1.26 | 1.00 | 0.259 | 0.369 | 0.228 | 0.144

item09 | 1.07 | 0.97 | 0.326 | 0.387 | 0.175 | 0.112

item10 | 1.02 | 0.94 | 0.342 | 0.385 | 0.183 | 0.090

Sum: | 14.47

threshold parameters: rating scale model

item | threshold parameters

label | 1 | 2 | 3 | location

___________|________|________|________|__________

item01 | −1.447 | 0.019 | 0.122 | −0.435
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item02 | −1.484 | −0.018 | 0.085 | −0.472

item03 | −1.356 | 0.110 | 0.213 | −0.345

item04 | −1.331 | 0.135 | 0.238 | −0.319

item05 | −1.073 | 0.393 | 0.496 | −0.061

item06 | −0.918 | 0.548 | 0.651 | 0.094

item07 | −0.893 | 0.573 | 0.676 | 0.119

item08 | −0.747 | 0.719 | 0.822 | 0.265

item09 | −0.476 | 0.990 | 1.093 | 0.536

item10 | −0.392 | 1.074 | 1.177 | 0.619

mean threshold

distances: 1.466 0.103

item fit assessed by the Q−index

itemlabel | Q−index | Zq | p(X>Zq)

___________|_________|__________|___________

item01 | 0.1483 | −0.7426 | 0.77115 | −....!.Q..+ |

item02 | 0.1807 | 0.6670 | 0.25238 | −.Q..!....+ |

item03 | 0.1528 | −0.2980 | 0.61714 | −....!Q...+ |

item04 | 0.1631 | 0.4262 | 0.33497 | −..Q.!....+ |

item05 | 0.1550 | −0.7569 | 0.77545 | −....!.Q..+ |

item06 | 0.1641 | 0.3487 | 0.36367 | −..Q.!....+ |

item07 | 0.1969 | 1.4552 | 0.07281 | Q....!....+ |

item08 | 0.1543 | −0.3350 | 0.63118 | −....!Q...+ |
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item09 | 0.1499 | −0.7769 | 0.78138 | −....!.Q..+ |

item10 | 0.1625 | −0.0382 | 0.51525 | −....Q....+ |

−?:p<0.05, +?:p>0.95

−!:p<0.01, +!:p>0.99

According to the Q−index, there is no item with a significant deviation

from the expected characteristic as predicted by the Rating Scale model in

this latent class. Similarily to the results in class 1, there is no indication to

assume that the model does not fit the item responses in this class.

Nevertheless, a decision regarding model fit should only be based on the

goodness−of−fit statistics for the whole model, which are given at the end

of the output file.

The third latent class is a LCA−type class, i.e., it is assumed there are no

systematic differences between the members of this class. In our example

dataset, about 20 percent of the observed patterns can be fitted by this class.

Final Estimates in CLASS 3 of 3 with size 0.22534

====================================================

(LCA) Latent Class Analysis: class−specific thresholds:

according to the ordinal (partial credit) model

The partial credit model reserves one parameter for each threshold, i.e., in
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contrast to the two Rasch model classes before, no restrictions are imposed

on the threshold parameters.

expected category frequencies and item scores:

Item | Item`s | relative category

label | Score | Stdev | frequencies

_________|_______|_______| 0 | 1 | 2 | 3

item01 | 1.72 | 1.05 | 0.147 | 0.286 | 0.266 | 0.301

item02 | 1.41 | 1.15 | 0.293 | 0.252 | 0.210 | 0.245

item03 | 1.52 | 1.10 | 0.242 | 0.233 | 0.286 | 0.240

item04 | 1.53 | 1.09 | 0.216 | 0.290 | 0.242 | 0.253

item05 | 1.49 | 1.10 | 0.246 | 0.249 | 0.274 | 0.230

item06 | 1.50 | 1.05 | 0.211 | 0.291 | 0.281 | 0.217

item07 | 1.46 | 1.11 | 0.248 | 0.283 | 0.227 | 0.242

item08 | 1.56 | 1.12 | 0.224 | 0.271 | 0.229 | 0.276

item09 | 1.50 | 1.08 | 0.224 | 0.286 | 0.256 | 0.234

item10 | 1.46 | 1.08 | 0.234 | 0.297 | 0.241 | 0.228

Sum : :| 15.16

The expected category frequencies are sufficient statistics of the item

parameters in the latent classes. These conditional frequencies have to be

estimated in each E−step of the EM algorithm in WINMIRA 32 for both,

Latent Class models and Rasch models.
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These category frequencies hold for all subjects in the case of a LCA class,

because subjects do not differ systematically in the latent classes of LCA.

Because of the local independence assumption in the LCA, the probability

of any pattern can be computed by means of these relative category

frequencies by simple multiplication.

threshold parameters: ordinal (partial credit) model

item | threshold parameters

label | 1 | 2 | 3 | location

___________|________|________|________|__________

item1 | −0.663 | 0.073 | −0.126 | −0.239

item2 | 0.151 | 0.180 | −0.151 | 0.060

item3 | 0.038 | −0.207 | 0.177 | 0.003

item4 | −0.294 | 0.181 | −0.044 | −0.052

item5 | −0.011 | −0.096 | 0.177 | 0.023

item6 | −0.320 | 0.034 | 0.257 | −0.009

item7 | −0.133 | 0.219 | −0.064 | 0.007

item8 | −0.187 | 0.167 | −0.187 | −0.069

item9 | −0.244 | 0.110 | 0.089 | −0.015

item10 | −0.236 | 0.207 | 0.058 | 0.010

The threshold parameters in class 3 are listed in the table above. As in

classes 1 and 2 before, the last column is an overall difficulty parameter. It

can be seen that, as compared to the class 1, these parameters do not vary a
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lot. This holds also for the threshold parameters, as the category

frequencies are more or less equally distributed for all items.

The class specific output ends here. The following part contains some

general information on whether and where the class membership

information has been saved and overall goodness.of−fit measures.

statistics of expected class membership:

| exp. | mean |

class | size | prob. | 1 | 2 | 3 |

______|_______|_______|______|______|______|

1 | 0.521 | 0.865 | 0.865| 0.051| 0.084|

2 | 0.289 | 0.770 | 0.066| 0.770| 0.164|

3 | 0.190 | 0.707 | 0.126| 0.167| 0.707|

The table above shows some descriptives of this assignment procedure.

The expected class size is printed in the second column, the mean of the

assignment probability (maximum posterior probability) is listed in the

third column. The table is completed by a list of mean posterior

probabilities for all classes, given that the current class (row number) has

maximum posterior probability.

Goodness of fit statistics:
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estimated saturated

model model

Log−Likelihood : −24568.35 −14823.74

Number of parameters : 112 1048575

geom. mean likelihood : 0.29293527 0.47672437

Information Criteria:

AIC−Index : 49360.70 2126797.49

BIC−Index : 49988.06 8000287.94

CAIC−Index : 50100.06 9048862.94

Power Divergence GoF statistics:

emp. value chi−square p−value

Likelihood ratio : 19489.21 p= 1.0000

Cressie Read : 190988.37 p= 1.0000

Pearson Chisquare : 1049539.31 p= 0.2287

Freeman−Tukey Chi^2 : 12989.60 p= 1.0000

Degrees of freedom : 1048463

To evaluate the fit of a specified model, the goodness of fit table has to be

examined carefully. In the case of many items with more than 2 response

categories, there are a lot of possible response patterns, most of which are

not observed. Data with many zero frequencies are referred to as sparse
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data. In case of sparse data, the traditional goodness−of−fit significance

tests (in the table Likelihood ratio up to Neyman Chisquare) cannot be

used (compare v.Davier, 1997).

WARNING: Number of cells is larger than number of different patterns!!!

obs.patterns/cells = 0.001749038696289060

number of zero cells = 1046742

WARNING: Number of cells is larger than number of subjects!!!

subjects/cells = 0.001908302307128910

The data might be very sparse, please do not use the

chi square p−value approximation for the Power Divergence

Goodness of Fit Statistics.

Consider to use the parametric bootstrap procedure instead.

In addition, several start values should be used (see defaults menu) in

order to examine the occurance of local likelihood maxima.

If the data table is sparse, some researchers rely on socalled information

criteria (see above) to compare different models. Information criteria (IC)

are based on the log−likelihood and the number of estimated model

parameters. The number of parameters is included as a penalty term, so

that more parsimonious models are preferred. These IC's, for instance the

BIC, are compared for different models which were estimated for the same

data and the model with the smallest IC is chosen.
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A better way than evaluating the models by means of information criteria

is to use the parametric bootstrap procedure for the evaluation of

Goodness−of−Fit Statistics, which is implemented in WINMIRA 32 (see

section 2.9). In the example above, 20 bootstrap samples have been

simulated. At the bottom of the table, the empirical p−values for these 20

samples are listed. It can be seen that between 2 and 17 bootstrap samples

showed a higher Goodness−of−Fit value than the real data. Therefore, the

assumption that the data were generated by the specified HYBRID model

is not falsified.

Parametric Bootstrap estimates for Goodness of Fit:

No.: Satlik LogLik LR CressieRead Pearson X^2 FT

1 −14836.781 −24541.457 19409.352 190450.757 1069253.060 12984.9860

2 −14883.365 −24563.595 19360.461 188222.734 1073851.379 13063.5891

3 −14898.684 −24566.254 19335.140 183807.288 1048087.972 13191.3068

4 −14940.153 −24682.554 19484.801 187564.883 1069896.114 13257.5533

5 −14927.206 −24750.710 19647.008 188408.323 1059873.202 13285.5702

6 −14891.243 −24556.653 19330.819 185447.350 1051618.126 13143.8871

7 −14888.905 −24668.821 19559.833 189667.564 1060352.931 13162.2576

8 −14869.646 −24694.736 19650.179 191346.730 1054225.383 13145.5455

9 −14864.434 −24710.431 19691.993 189267.848 1041317.125 13196.0404

10 −14885.997 −24752.450 19732.907 191276.684 1066221.749 13251.3002
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11 −14909.753 −24742.399 19665.291 189308.678 1050411.606 13234.0416

12 −14903.741 −24674.261 19541.040 189206.466 1072625.593 13213.9483

13 −14870.321 −24462.530 19184.418 183339.043 1064587.444 13102.2003

14 −14868.631 −24076.854 18416.446 180624.497 1193808.517 12879.2104

15 −14817.184 −24093.470 18552.571 178027.561 1050349.133 12828.3274

16 −14850.098 −24197.824 18695.452 184627.623 1177492.758 12930.2590

17 −14857.015 −24029.929 18345.826 173529.495 1062309.443 12879.3370

18 −14865.694 −24052.424 18373.459 182297.386 1273164.429 12868.3238

19 −14846.662 −23975.028 18256.733 179065.513 1209296.487 12802.8427

20 −14832.243 −23909.898 18155.309 166976.243 1020880.850 12800.8061

Z: 0.668 1.018 −0.593 −0.4293

P(X>Z): 0.252 0.154 0.724 0.6661

Mean: 19119.452 184623.133 1088481.165 13061.0666

Stdev: 553.577 6255.476 65621.729 166.4833

p−values (emp. PDF): 0.350 0.100 0.850 0.6000

For very sparse data tables and small or moderate sample sizes, the

bootstrap procedure should be used only for the Cressie−Read and the

Pearson Chi−Square statistics (v. Davier, 1996). None of the four statistics

in the table above rejects the model in this example. But nevertheless, both

the FT and the Likelihood Ratio statistics can not be recommended, as a

very large sample size seems to be necessary to make the bootstrap reliable

for these statistics.
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